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Abstract 

The transfer equations for multiple reflections of X- 
rays in a mosaic crystal have been derived from the 
classical theory of electromagnetism. Unless all the 
beams are contained in the same plane (coplanar 
case), it is shown that: (i) for a generic polarization 
of the incident beam the process of diffraction mixes 
the tr and ~ components of the electric field in such 
a way that the transfer equations become non-linear; 
(ii) in the case of unpolarized incident radiation the 
transfer equations can be linearized if the electric 
field of each beam is split into two perpendicular 
components so that in the n-beam case a system of 
2n linear differential equations has to be solved. For 
neutrons (and X-rays in the coplanar case) reasonably 
simple solutions for the three- and four-beam cases 
have been derived. The solutions for the three-beam 
case are approximate but cover most of the situations 
which occur in practice, while the solution for the 
four-beam case is exact but applies to a special, 
although very common, case. Numerical calculations 
covering realistic situations have been performed in 
order to study quantitatively the effect of multiple 
reflections on both the peak and the integrated power 
of the primary diffracted beam. 

Introduction 

The intensity of the diffraction of X-rays from a 
mosaic crystal in the two-beam case has been dis- 
cussed by Zachariasen (1945, 1963) and in more 
general terms by Werner (1974). Partial extensions 
to the multiple-beam case have been described by, 
among others, Moon & Shull (1964) for neutrons, 
Zachariasen (1965), Caticha-Ellis (1969), Prager 
(1971), Unangst & Melle (1975) and Chang (1982) 
for X-rays. A computer program which corrects X-ray 
integrated intensities for the effect of multiple reflec- 
tions using the formulas quoted by Prager (1971) and 
deduced from the approximate treatment of Moon & 
Shull (1964) has been published by Rossmanith 
(1985). 

All of the above multiple-beam studies suffer from 
at least one of the two following shortcomings: (i) 
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the transfer equations are solved approximately; (ii) 
the effect of X-ray polarization is ignored altogether 
or dealt with incorrectly. In view of these limitations 
we have decided to re-examine the secondary-extinc- 
tion problem for a plane-parallel mosaic crystal in 
the two-beam and in the many-beam case. In accord- 
ance with previous studies, no attempt has been made 
in this paper to introduce the effect of primary extinc- 
tion. This means that the distances travelled by the 
n beams in each coherent domain must be much 
smaller than the corresponding extinction lengths. 

The polarization factor 

According to classical theory, the phenomenon of 
polarization introduces in the intensity of diffraction 
from the ith to thej th  beam a factor pu = sin 2 ~o, where 
q~ is the angle between the electric field Ei of the ith 
beam and the propagation vector kj of the j th beam: 

Pij = [f~ x (kj x ~,)12 = sin 2 ~P, (1) 

where the notation ~ denotes a unit vector parallel 
to v. 

In accordance with (1) the direction of the electric 
A 

field E U of the radiation diffracted along kj is given by: 

. . . . .  ^ ) 1  E U = -k j  x (kj x E , ) /k j  x x Ei (2) 

and the total electric field of the j th beam is written 
as 

Ej = ~  E0, (3) 
i 

where the term with i = j  contains the contributions 
arising both from transmission and from forward 
diffraction. 

Of course, since the incident electromagnetic field 
is a stochastic quantity, in order to derive from (1) 
and (3) the average value of the energy flowing along 
kj, suitable ensemble averages have to be performed. 
To this purpose it must be borne in mind that, 
although the n-beam interaction takes place within 
each crystallite, all processes occurring within a single 
block are described in the present model by means 
of kinematical theory. In addition, in each layer of 
blocks and for each angular position of the crystal, 
the domains contributing significantly to the process 
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of scattering are distributed at random. As such, in 
a mosaic crystal the transfer equations are written for 
the intensities using reflectivities calculated according 
to kinematical theory. A further point concerns the 
phase difference between the two mutually perpen- 
dicular components (Eo~ and Eo~) of the incident 
electromagnetic field. The correlation between these 
two components has a direct bearing upon the scat- 
tered intensities since the polarization factors have 
to be calculated, in whatever model, from the polariz- 
ation vector of the electromagnetic fields. In the case 
of spontaneous emission of radiation (line spectrum 
of an X-ray tube) and if the observation is performed 
on a time scale which comprises a large number of 
elementary processes of photon emission, one has 

(Eoo, E*,~) = O, (4) 

where Eo~ and Eo~ are the complex amplitudes of 
Eo~, and Eo,~ and the angular brackets denote 
ensemble-average values. It is important to realize 
that (4) is not an inherent property of electromagnetic 
radiation so that in the case of synchrotron radiation 
or the white spectrum of an X-ray tube the correlation 
between the two components of the electromagnetic 
field has to be taken into account. Actually these 
correlations are the elements of the density matrix of 
the photon field or, in classical language, they are 
directly related to the Stokes parameters of the field 
(Shurcliff, 1962). 

In order to obtain further information from (1), 
(2) and (3), consider one of the n beams. As this 
beam travels a distance dt within the crystal, its 
electric field apart from absorption is subjected to a 
number of infinitesimal changes due to scattering to 
and from the other beams. The directions of the 
electric fields of all these infinitesimal changes are 
different and, in general, they are also different from 
the direction of the electric field of the beam as a 
whole. As a result, the state of polarization of each 
beam after travelling a distance dt within the crystal 
suffers an infinitesimal change and all the polarization 
factors become a function of distance. An explicit 
expression for the instantaneous value of p~j may be 
obtained from (1) if we set 

/~ = / jR+ rnj~ + nj$, (5a) 

Ei = Ety~+ Eiz~,. (5b) 

Then, 

p0 = 1 - (mjEiy + njE, z)2/IE,I 2. (6) 

Equation (6) means that since the polarization factor 
depends separately upon E~y and Ei~ each of these 
quantities has to be taken as an independent variable. 
Moreover, the transfer equations are not linear. 

Referring from now on to ensemble average values 
(for which we drop the angular brackets), if (4) holds 
for E~, we have 

p,j = 1 -(mjE,r+= 2 njE,,)/IE,l= = ~ (7) 

so that with E i2y and E i~ ( i =  1 , 2 , . . . ,  n) chosen as 
independent variables, it is possible to write a set of 
linear differential equations. 

Although the above argument is perfectly general, 
when all the beams are contained in the same plane 
(coplanar case) a suitable choice of coordinates 
allows the transfer equation to be linearized, irrespec- 
tive of whether (4) holds or not. We will work out 
explicitly the formulas for the two-beam case where 
this choice can always be made. 

Defining 

f~o = ~, fq =cos  20~ +sin  20~, Eo = E0y~ + Eoz~., 

where 20 is the angle between f~o and fq, we have for 
a plane-parallel crystal in symmetrical transmission 
or reflection: 

dlEol2/dt =-molEol2-po, rollrol2+p,or, olmtl 2, (8a) 
+dlE,12/dt  = - lzolE,12-p,or,  olEtl2 + po~ro,lEof, (8b) 

Pot = 1 - E 2 y  sin 220/Eo] 2, (9a) 

pro = 1 -  EL/IE,I 2, (9b) 

where /Zo is the linear absorption coefficient. The 
upper sign in (8b) refers to symmetrical transmission 
and the lower sign to symmetrical reflection. For 
centrosymmetric crystals, rio = rot = r, so that defining 

Io,, = cE~y, Io,~ = cE~z, ll, ,  cos 2 20 = cE~y, 

lt~ sin 220 2 = cE t,~, It ~ = cE~,~ 

(where c is a constant which we need not detail here) 
and substituting in (8a, b) and (9a, b), we have 

d( lo,~ + l o ~ ) / d t  = -~Zo( Io,. + Io.,) 

- r(lo~ cos 220+  Io,~) 

+r(l ,~,  c o s 2 2 0 + I , ~ )  (10a) 

± d(I~,. + I ~ . ) / d t = - t x o ( l , ~ . +  I, , ,)  

- r ( l l~  cos 220+  It,,) 

+r( lo~ cOs2 2 0 +  lo,,). (10b) 

The system (10a), (10b) can be split into two systems, 
one for the parallel component (o) and the other for 
the perpendicular component (z r). For the o com- 
ponent we can write 

d l o ~ / d t = - ( # o + r C o s 2 2 0 ) I o ~ + r c o s 2 2 0 I , ~  ( l l a )  

+ d l t , J  d t  = -( tZo + r cos2 20 ) lto- + rcos 220Io,,, ( l i b )  

while for the other component we have the same 
equations without the factor cos 2 20. This factor, then, 
can be interpreted as the polarization factor of the cr 
component, according to the well known elementary 
treatment of X-ray polarization (Warren, 1969). The 
system ( l l a ) ,  (1 l b) has the same structure as the 
system of equations originally written by Zachariasen 
(1945). Setting t = x / 7 ,  where y is the modulus of 
the direction cosine of the incident beam relative to 



R. CANNATA, S. MARTELLI,  G. MAZZONE AND F. SACCHETTI 681 

the normal of the crystal plate, we have in symmetrical 
transmission the following solution for the diffracted 
beam: 

I,~(x) = Io~(0) exp (-tZoX/7) exp ( - r  cos 2 20x/3') 

x sinh (r cos 2 20x/7)  (12a) 

I ,~(x) = Io~(0) exp (-l.toX/7) exp ( - r x / y )  

x sinh (rx /y) .  (12b) 

If we set Io~(0)= I o / ( l + K )  and Io~(0)= KIo/ 
(1 + K),  where K is the usual parameter defining the 
degree of polarization of the incident beam and Io is 
its power at x = 0, adding (12a) to (12b) we obtain 

I~(x) = (1 + K)-II0 exp (-p,  oX/7) 

x [exp ( - r x / 7 )  sinh (rx/3/) 

+ K exp ( - r  cos 2 20x/7)  

x sinh (r cos 2 20x/y)]  (13) 

and, upon expansion of (13) up to second-order 
terms, 

I~(x) = (1 + K)-~lo exp (-tXoX/3') 

× [rx(1 + K cos 2 2 0 ) / 7  

- r 2 x 2 ( l + K  cos4 20)/~/2]. (14) 

As (14) has already been reported by Zachariasen 
(1963), who stated explicitly that the system of 
differential equations has to be integrated separately 
for the two components,  the results of the two-beam 
case may appear trivial. However, we note that the 
choice of two components,  one parallel and the other 
perpendicular to the plane of diffraction, allows one 
to linearize and decouple the transfer equations. The 
physics corresponding to this choice is that the pro- 
cess of diffraction does not mix these two components 
which are effectively independent. It is clear that the 
same choice is not possible in the multiple-beam case 
unless all the beams happen to be in the same plane. 
Needless to say, a change of coordinate system after 
the first scattering process does not eliminate this 
difficulty. In the n-beam coplanar case, on the other 
hand, it is easy to show that the solution of the transfer 
equations may be obtained in analogy with (10a) 
and (10b) if one sets up two systems of n equations, 
one for the perpendicular component with Pu -- 1, and 
another for the parallel component with Po = c°s220 U. 
In order to derive the transfer equations for the many- 
beam case, it is convenient to describe the effect of 
polarization on the intensity of diffraction from a field 
Eo to a field E1 by means of the factor Eo. E~I 2. This 
formulation of the effect of polarization is entirely 
equivalent to (1). We will specialize in what follows 
to the case of three beams having propagation vectors 
ko, k~ and k2. For each beam we have chosen two 
perpendicular components of the electromagnetic 

field as detailed below: 
^ A A ^ A 
ko = x; Eo,~ = y; Eo~ = f~ (15a) 

^ A 
kl = cos 20olx+sin 20o17, "} 

A A 
E ~  = - s in  20o~X+COS 20o~; (15b) 
^ A 
E ~  = z,  

A 
k2 = I~+ m~+ nf~; '~ 

E2~r = - m /  (m 2 + 12)~/2:~ + l/ (m 2 + 12) ~/2~; 

l 

f~2,r=in/(m2+12)~/2~+mn/(m2+12)~/2 ~ (15c) 

- ( m2 +12)l/2.Z 

In order to simplify the algebra, k0 and kl have been 
placed in the xy plane as the ~r component of all 
beams. The 7r component has been chosen along the 
z axis for Eo and El,  but owing to the other constraints 
it is impossible to do the same for E2 as well. 

As a result E2~ is not orthogonal to Eo~ and E ~  
so that one has mixing of the cr and 7r components 
of the three beams. 

If the source of electromagnetic radiation is such 
that (4) holds, it is possible to neglect in the transfer 
equations all cross terms of the type (Ei~rE*~,) and to 
retain only the squares of Ei~ and E,,, ( i T 0 ,  1,2). 
However, because the polarization factors IE0~r.E2~[ 2 

^ ^ 2 ' ' and EI~.E2~I are not zero it is impossible to split 
the system of 2n linear differential equations in two 
systems, each consisting of n equations. The polariz- 
ation factors can be calculated at once from their 
definition and equations (15a), (15b), (15c). Having 
defined a new set of reflectivities 

A 
riaj[3=rijEia.Ej~l 2 ( i # j = O ,  1,2; a ,~=cr ,  ~r), (16) 

one has the following transfer equations in the three- 
beam case: 

dlo~,/ dt = -(tXo + ro~o~ + ro~2~ + roo,2~-) I0,, 

+ r~o~Ii~ + r2~0~I2~ + r2~0~I2,~, 
(17a) 

dIo,~/dt = -(tXo + ro,~ + ro~2~,) I0~- 

+ r~,,o~,ll,, + r2~-o~-I2_ 

+ d l w / d t  = l ro~l=Io= - (tZo + rigor+ r~,,2~ 

+rla2rr)ll'r+r2'rl~12~'+r2"rl'rl2~r' (17b) 

+dI~,J dt = ro,~,~ Io,~ - (tXo + r~ ~,o,~ + r~ ~2~) l~ ,~ | 

J 
±dI2~/dt  - -  r 0 t r E ~ r l 0 t  r "+" r l t r 2 t r / l t  r 

-(Izo + r2~o~ + r2~)12~, 

±dIE,,/dt = ro,~2~Io,~ + ro~2,~Io,~ + rl,~EJl~, 

+ r1~2~I1~ 

- ( / . t o +  r2~o,, + r2~o~ + r2~1~ 

+ r2~,~)I2~, 

(17c) 
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with obvious generalization to the case of n beams. 
From this discussion we deduce that, even when (4) 
holds, the approximate solution obtained by Moon 
& Shull (1964) for neutrons by means of an expansion 
up to second order of the intensities of the n beams 
as a function of crystal thickness cannot be modified 
for X-rays with the simple addition of single- and 
double-diffraction polarization factors. Moreover, for 
X-rays one has the further problem that an expansion 
up to second order may not be sufficiently accurate. 
Unfortunately, even neglecting the problem of polari- 
zation, the exact solution of the multiple-reflection 
problem is of considerable difficulty unless the 
diffracted beams are symmetry related. If this is not 
the case, the most likely occurrence of multil~le reflec- 
tions concerns the three- and four-beam cases for 
which we will derive some relatively simple analytical 
solutions valid approximately for neutrons and in the 
coplanar case also for X-rays. 

The three-beam case 

In principle the exact solution of the transfer 
equations in the three-beam case is always possible; 
however, if one uses the formula for the roots of a 
cubic equation, the solution becomes awkward and 
difficult to handle (Mazzone, 1981). A fairly simple 
approximate solution may be obtained for a crystal 
in the shape of a plate which is large compared with 
the incident-beam cross section. The transfer equa- 
tions at a depth x below the crystal are written as 
follows in the notation of Moon & Shull (1964): 

dPo/dx = - ( /~o+ ro, + ro2) Po/ To 

+ rloP1/ Tl + r2oP2/ T2, (18a) 

± d P , /  dx = rol Po/ To-  (pro +rto + r,2) P,/  T, 

+ r2, P2/ 72, (18b) 

the coefficients A U are determined from the boundary 
conditions and the hj's are the roots of the secular 
equation. In practice the algebra is considerably sim- 
plified using Laplace transforms (Mazzone, 1981). 
Defining o-= Y,~ ri and r = Y~,>j r~rj, we have the fol- 
lowing secular equation: 

A3 + A2[tr(1 + F ) +  r,(1 :F F) +/~(2 ± F)] 

+ A[/~E(1 + 2F) +/~cr(1 ± 3F) + p.r,(1 ~: F)  

+ r(1 ± 2F)]  ± /~F(~  2 + 2/~cr + 3 r) = 0 (19) 

with the upper sign applying to the T case and the 
lower sign to the R case (this convention will be used 
throughout this section). The algebra of the problem 
is particularly simple if one root of (19) happens to 
be known. For instance, in the T case, one root of 
(19) is h~ = - /x if one sets F = 1 everywhere in (18a), 
(18b), (18c) or, alternatively, if txo/F is substituted 
for fro in the right-hand side of (18c). This second 
change, although much less drastic than the first, still 
leads to a cubic equation substantially different from 
(19). One is therefore led to look for a minor 
modification of (19) which allows one to determine 
immediately one of its roots. Writing (19) in terms of 
a new variable a = h +/z, we have 

a 3 + a2[2o. - (1 :~ F)(/~ + cr - r,) ] 

+ c¢ [ ~:(1 + 2F) - /~(1 ~: F)(cr + r,)] = ~tr(1 ~: F). 

(20) 

If the quantity on the right-hand side of (20) was 
zero, it is clear that one solution of (19) would be 
h~ = - /x .  For this to happen we have to modify the 
last term of (19) as follows: 

[d,F([d, 2 q_ 21~tr + 3 r) ~ I~F(I~ E + 2p.tr + 2r + r~ F). 

(21) 

+dP2/ dx = ro2Po /To  + r~2PJ Yl 

- (Zo+ r~o+ r~,)Pd T~, (18c) 

where P0, Pt and P2 are the powers of the incident, 
primary and secondary beam, respectively, with 
appropriate boundary conditions. Restricting our 
attention to the primary beam in symmetrical trans- 
mission (7o = 71), we have two cases T and R depend- 
ing on whether the secondary beam is in transmission 
or in reflection. We define: /z =/Zo/Yo, rl = rl0/Y0 = 
rot/To, r2 = rEo/T0 = roE/TO, r3 = rtE/TO = rEl/To and 
C---- To//3/2 with the understanding that in the case of 
X-rays the three beams have to be coplanar and that 
each ri contains the appropriate polarization factor. 
Following Zachariasen (1965) the solution of the 
system may be written as Pi = ~ j A  o exp A~x, where 

Since in an actual experiment F~>0-5, it may be 
shown that modification (21) is substantially negli- 
gible if the absorption coefficient is either much larger 
or much smaller than the crystal reflectivities. These 
two conditions correspond to what usually happens 
with X-rays (/z >> ri) and with neutrons at the peak 
of the reflectivity (/z,e ri). One root of (19) having 
been determined approximately, the remaining 
algebra becomes fairly simple. The expression for 
Pl(x), if I is the crystal thickness and ~o is the power 
of the incident beam at x = 0, is 

Pl(x) = (~0/A)  exp (-/xx){ B - e x p  ( - C x / 2 )  

x [ B cosh (Ax/2) + ( 1/A )( BC - A D )  

xsinh (Ax/2)]} (22) 
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where 

A = (o.+ r,)ix(+F - 1) + (1 ± 2F)r ,  

B=(IXrl + r ) ( ~ F - 1 ) + r ( I  + v r ) ,  

c = (ix + o. - r~)(+F - 1) + 2o-, 

D = 2rl + 2r3 VF, 

A = ( C 2 - 4 A )  '/2, 

V(case T) = 0; 

V(case R ) =  {~'A[exp ( C l / 2 ) - c o s h  (A//2)] 

+ (2Ar2-  zC) sinh (Al/2)} 

x{zA exp (Cl /2)+ A ( A - z )  

x cosh (AI/2) + [2A(o-+ r,) 

- C ( z +  A)] sinh (za//2)}-' 

Concerning the validity of (22), we notice that the 
solution of the system (18) has to satisfy certain 
boundary conditions which in the T case are relative 
to ~0, P,(0) and P2(0). Inserting these conditions in 
(18a), (18b), (18c), one obtains further conditions 
for the first (and second) derivatives of Po, P, and 
P2 at x = 0. All these conditions are used to determine 
the coefficients A o so that, in the T case, the approxi- 
mate solution (22) is exact together with its first and 
second derivative at x =0.  As a consequence, the 
validity of (22) depends also upon the depth of 
penetration, becoming less and less accurate as x 
increases. 

If r2= r3, a root of (19) is h l = - ( i x + 2 r l + r 2 )  as 
one can verify immediately. Consequently, (18a), 
(18b), (18c) can be solved exactly. The explicit 
expression for Pl(X) in the T case is 

Pl(x) = ~o exp (- ixx){A exp [ ( -2 r l  - r2)x] 

- e x p  [(ix - i x F - 2 r 2 F -  r2)x/2] 

× [ A  cosh ( A x / 2 ) + ( 1 / A ) ( A B - 2 r l )  

×sinh (Ax/2)]}, (23a) 

where 

A = [(ixrl + ~ ' ) (F -  1 ) - 2 r  2 + rlr2 + rZ]{ixr2(F- 1) 

- (2r~ + rE) ( /x + 2 r E ) ( F  - 1 ) - 2 (  rl - r 2 ) ] } - 1 ,  

B=( ix  + 2 r 2 ) ( F -  1 ) -  4r~ + rE, 

A = {[ (ix + 2 r 2 ) ( F -  1 ) + 3 r212- 4ixr2( F -  1 )} 1/2. 

In the R case, 

P,(x) = (~o/2)  exp ( - ixx ){ -exp  [ - (2 r ,  + r2)x] 

+ exp [(Fix + 2Fr2- r2)x/Z][cosh (Ax/2)  

+ (1/A ) (4Fr2 V -  r2-2Fr2-  ix - Fix) 

xsinh (Ax/2)]}, (23b) 

where 

A = {I/x(1 - F)  + r2(1 - 2F)]  2 + 4F/x (/.1. + 3r2)}'/2, 

V =  [2r2 tanh (All2)]I{A + [IX(1 + F)  

+ r2(1 + 2F)]  tanh (AI/2)}. 

In the case of neutrons where the reflectivities are 
weakly angle dependent,  the condition r 2 ~ r 3 occurs 
rather frequently so that the use of the solutions (23) 
may be particularly appropriate. A final remark con- 
cerns the possibility that, because of symmetry, more 
than three reciprocal-lattice points (r.I.p.'s) are simul- 
taneously, but not accidentally, on the sphere of 
reflection. We have considered the situation in which 
four r.l.p.'s are simultaneously excited with the 
geometric conditions that ]ko- k31----]kl - k2[ and [ko- 
k2[ = I k , -  k31, where the k's are the propagation vec- 
tors of the four beams. This situation is particularly 
frequent in actual practice, as evidenced by experi- 
mental papers on multiple reflections. The exact sol- 
ution of this case can be obtained fairly easily if the 
symmetry of the problem is used to split the quartic 
secular equation into the product of two quadratics. 
We quote the result for P~(x) when all beams are in 
transmission so that the following relations apply: 
TO = 3/1,  T 2  = 3/3 ,  r i o  = r o ,  = r l ;  r20  = r02  = r13 = r31 = r 2 ,  

r30 = r03 = r21 = r~2 = r3; r32 = !"23 = r4. 

where 

P,(x) = (~0/2)  exp ( -Ax /2 ) ( cosh  (A~x/2) 

+ [ ( F -  1)(/x + r2+ r3)](1/A~) 

× sinh ( A l x / 2 ) -  exp ( - r l x -  Frax) 

× {cosh ( a 2 x / 2 ) + [ ( F -  1)(IX + r2 + r3) 

+2(Fra-r~)](1/A2)sinh(A2x/2)}) ,  (24) 

A = ( r +  1)(/.1. + r2+ r3), 

B =  F[ix2+ 21x(r2+ r3)], 

C =A+2(rl+l-'r4),  

D = F(ix2+2ixtr+2z+2r~r4+2r2r3), 

A, = ( A 2 - 4 B )  1/2, 

A 2 = ( C 2 - 4 D )  1/2. 

N u m e r i c a l  r e s u l t s  

The equations derived in the preceding section can 
be used to assess the influence of a secondary reflec- 
tion on the integrated and peak power of the primary 
reflection. The calculation of the crystal reflectivities 
and of the Lorentz factors can be performed along 
the lines indicated by Moon & Shull (1964), who have 
limited their study to the case when all r.l.p.'s are 
simultaneously on the sphere of reflection. In practice 
it may happen that the peak reflectivities of two or 
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more reflections are separated by an angular distance 
which is small but not negligible with respect to the 
mosaic distribution halfwidth. This case, which 
requires a simple modification of the standard for- 
mulas, will not be considered here. Since the numeri- 
cal results presented in the following refer to coplanar 
multiple reflections it has been possible to account 

Pt 2 " 5 4 x  l0  - I  
correctly for the effect of X-ray polarization. Because R1 1.83 × 10 -3 
of the number of parameters appearing in (22), (23) 

P1 1"88 x l O - I  and (24), a systematic study of these equations is R, 3.75x10 -3 
clearly impossible. Rather, we have chosen to study 
a few realistic cases for which we have calculated the P, i.o2 x lO" 
power of the primary beam according to purely kine- R, 4.71 × l 0  4 

matical two-beam and multiple-beam theory for P~ 2.91x10 -2 
neutrons and X-rays. For X-rays we have considered R~ 5.16 x 10 -4 
separately the two states of polarization. 

The integrated power in the multiple-beam case 
Pi 1"21 x 10 -3 

has been obtained by numerical integration of the R, 6.78x IO 6 

primary-beam power over the angular variable of an 
to scan. All examples refer to situations occurring in P~ 5.41 x l0 -4 
the cubic system. The first example reported in Table g~ 1.01 x l0 -5 
1 concerns 115 as primary reflection in symmetrical P, 4.32× 10 -2 
transmission and 222 as secondary reflection in the Rl 1 " 9 4 x 1 0 - 4  

T case. If the two scattering vectors are contained in Pt 1.15×10 2 

the (110) plane of the reciprocal lattice these reflec- g~ 2.03 x 10 -4 
tions are excited simultaneously when the radius of 
the sphere of reflection is 2.6383 reciprocal-lattice 
units. This condition is satisfied using, for instance, P, 5.72x 10 -s 

( 1 . 7 8 x  10 -3 ) 
ao = 3.673 ~ ,  which is typical of copper alloys, and R. 3-49x 10 -6  

h = 1 .3922~ (Cu Kfl). Accordingly, we have used (8.58×!0 -6) 
the physical properties of copper to calculate the t,, 5.35× 10 -4 
reflectivities of X-rays and neutrons at this wave- ( 5 . 9 4 x 1 0  -4)  

length. The symbol 8 appearing in Table 1 corre- R~ 1.05xl0 -~ 
sponds to the FWHM of the mosaic distribution ( l ' l l  x l O - ~ )  

function, while P1 is the peak value of the primary- p, 4.49x l0 -2 
beam power and R1 is its integrated power. All values g~ 2.07 × l0 -4 
have been normalized to the incident-beam power p, 1-28x 10 -2 
(~0=1) .  Notice that, since 20o2-82 °, the parallel R, 2.26x10 4 
X-ray component of the secondary reflection is very 
weak. In addition, since 002- 0~2, the condition r2 = r3 
is satisfied very well for neutrons and within 10% for 
X-rays. This case therefore allows the possibility of 
performing a significant check on the limits of validity 
of (22). 

Listed in Table 1 are the numerical results of (22) 
with the results of (23a) added in parentheses when 
they differ from the former by more than ---1%. 
Inspection of this table shows that significant differen- 
ces between the two solutions occur only for relatively 
thick (/zol = 1) crystals when modification (21) [which 
amounts to neglecting the quantity I(F • 1)r/F I with 
respect to/.i. 2] is not irrelevant. Actually, in the case 
where the two solutions show the largest difference 
one has at the peak of the mosaic distribution function 
(1-F)r/F---O.351x 2. It is also interesting to notice 
that in most cases the excitation of the secondary 
reflections weakens the power of the primary beam 
and that in no case does one observe Umweganregung, 

Table 1. Calculated power of the 511 primary reflection 
in the presence of the 222 secondary reflection 

N e u t r o n s  

X - r a y s  p a r a l l e l  

X - r a y s  p e r p e n d i c u l a r  

P h y s i c a l  p r o p e r t i e s  o f  c o p p e r ,  A = 1 . 3 9 2 2  ~ , .  

T h r e e  b e a m s  T w o  b e a m s  K i n e m a t i c a l  

c5 = 0 . 2 5  ° tzol = 0.01 
4 . 3 1 x i 0  i 1 .16 

2 . 5 4 x  10 -3 5 .06  × 10 -3 

t5 = 1 ° / x o l  = 0.01 
2 . 1 6 x  10 - t  2 . 8 9 x  10 - t  

4 .13  x 10 -3 5 . 0 6 x  10 -3  

= 0 ' 2 5  ° / x o l  = 0.001 
1.08 x 10-1 1.22 x 10 - t  

4 . 9 0 x  10 4 5 .33  x 10-4  

6 = 1 ° /,tol = 0 .001 
2-95 x 10 -2 3"05 x 10 -2 

5 .22  x 10 -4 5-33 x 10 -4  

6 = 0 .25  ° p.ol = 1 
! "30 x 10-3 2 .67  × 10 -3 

7 . 0 6 x  10 `6 1 . 1 7 x  10 -5  

t5 = 1 ° /zol = 1 
5"46 x 10 -4  6"69 x 10 -4  
1 . 0 2 x 1 0 - 5  1 . 1 7 x 1 0  5 

t5 = 0 .25  ° /zol = 0" 1 
4 " 3 3 x  10 2 4 . 7 0 x  10- ~ 
1"94 x 10 -4  2"06 x 10 -4  

~5 = I ° /Xo /=  0.1 
1 - 1 5 x  10 .2 1 - 1 8 x  10 -2 

2"03 × 10 -4  2"06 × 10 -4  

6 = 0 .25  ° / z o l  = 1 
1 ' 3 6 x  10- 3 

7 .57  × 10 -6  

t$ = I ° # o  I = 1 
6 .03  x 10 -4 

1 . 1 3 x 1 0  - s  

3-03 x 10 -3 

1.33 x 10 -5  

7 .58  x 10 4 

1 "33 x 10 -5  

~5 = 0 . 2 5  ° ~ o l  = 0.1 
4 . 8 6 x  10 .2 5 .33 x 10 -2  

2 .18  x 10 -4  2 .33  x 10 - a  

5 = I ° p . o / =  0.1 
1 "30 x 10-2 1-33 x 10 -2 

2 . 2 9 x  10 4 2 .33  x 10-4  

that is a primary-beam power higher than that calcu- 
lated in the kinematical approximation. Equivalent 
calculations have been performed exchanging the role 
of the two sets of planes, that is setting 222 as primary 
reflection and 115 as secondary reflection in the R 
case. The main feature of this calculation is the sys- 
tematic occurrence of Umweganregung for the 
parallel X-ray component,  owing to the very low 
reflectivity of the primary reflection for this radiation. 
For neutrons and the other X-ray component,  the 
effect of the perturbation is definitely smaller than 
that observed in the preceding calculation for equal 
crystal thicknesses. The results of (22) relative to this 
case are reported in Table 2. Notice that in this setting, 
because of the change of geometry, ( I+F)r /F  is 
much smaller than tz 2. The accuracy of the solution 
(22) can be checked quite easily since for the perpen- 
dicular X-ray component,  which shows the largest 
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Table 2. Calculated power of the 222 primary reflection 
in the presence of the 511 secondary reflection 

Physical properties of  copper, A = 1 . 3 9 2 2  .zi. 

Three beams Two beams Kinematical 

Neutrons 
6 = 0.25 ° / z o l  = 0.01 

Pt 1"16:< 10- t  1"18:<10-1 

R I 5.32 :< 10 -4 5.37 :< 10 -4 

6 = 1 ° / Z o / =  0"01 
Pt 3 . 2 6 x  10 -2 3 . 2 6 x  10 -2 

R 1 5 . 7 6 x  10 -4 5 . 7 6 x  10 -4 

6 = 0.25 ° / x o l  = 0.001 
Pt 1 "35 x 10 -2 1"35 x 10 -2 

R l 5-91 :< 10 -5 5"91 x 10 -5 

6 = 1 ° / x o l  = 0"001 
Pt 3 . 4 0 x  10 -3 3 . 4 0 x  10 -3 

R1 5"96 :< 10 -5 5"96 x 10 -5 

X-rays parallel 
6 = 0-25 ° / z o l  = 1 

Pt 1 . 0 2 x  10 -3 9-76:< 10 -4 
R~ 4-42 :< 10 -6 4.28 x 10 -6 

6 = 1 ° p.o I = 1 
P1 2.48 x 10 -4 2.45 x 10 -4 

R 1 4.33 :< 10 -6 4-28 x 10 -6 

6 = 0 . 2 5  ° p , o / =  0"1 
Pt 3.31 x 10 -4 3 . 2 3 x  10 -4 
R I 1 . 4 4 x  10 -6 1.41 x 10 -6 

6 = 1 ° / X o / =  0.1 
Pt 8" 12 :< 10 -5 8.07 :< 10 -5 

R t 1.42 :< 10 -6 1.41 :< 10 -6 

X-rays perpendicular 
6 = 0"25 ° / z o l  = 1 

Pt 3"51 :< 10 -2 4"26:< 10 -2 

(3 "72 x 10 -2)  

R 1 1 -74x  10 -4 1"97 x 10 -4 

(1"79 x 10 -4) 

6 = 1 ° / x o l  = 1 
P1 1 - 1 8 x  10 -2 1.23:< 10 -2 

R 1 2" 12 :< 10 -4 2" 17 :< 10 -4 

6 = 0 " 2 5  ° p , o / =  0"1 
P~ 1-65 :< 10 -2 1 "66 :< 10 -2 

Rt 7"29 :< l0  -5 7"32 :< 10 -5 

t5 = 1 ° / X o / = 0 " l  
PI 4.21 x 10 -3 4-22:< 10 -3 

R t 7.38 :< 10 -5 7"39 x 10 -5 

1"35 x 10 - I  

5 . 9 0 x  10 -4  

3"37 x 10 -2 

5-90 x 10 -4 

1-36 x 10 -2 

5.97 :< 10 -5 

3"41 x 10 -3 

5.97 x 10 -6 

9"80 :< 10 -4 
4"29 :< 10 -6 

2.45 x 10 -4 

4"29 :< l0 -6 

3"23 x 10 -4 
1-41 x l0 -6 

8.07 x 10 -5 

1.41 :< 10 -6 

5.14:< 10 -2 

2-25 :< 10 -4 

1.29 :< 10 -2 

2.25 :< 10 -4 

1.70 :< 10 -2 

7.42 :< 10 -5 

4 . 2 4 x  10 -3 
7.42 :< 10 -5 

Table 3. Calculated power of the 200 primary reflection 
in the presence of the 311 and 1 l l secondary reflections 

Physical properties of  copper, A = 1 . 7 9 0 3 / ~ .  

Four beams Two beams Kinematical 

Neutrons 
6 = 0-25 ° p.o I = 0.01 

PI 2.93 x 10 - l  2-57 x 10 - I  3.63 x 10 - t  

R I 1.44 :< 10 -3 1.25 x 10 -3 1-59 :< 10 -3 

6 = 1 ° tzol = 0.01 
Pt 9 .46 :< 10 -2 8-29 :< 10 -2 9"07 :< 10 -2 

R t 1 . 6 5 x  10 -3 1 . 4 9 x  l0  -3 1 . 5 9 x  10 -3 

6 = 0-25 ° i.tol = 0.001 
P1 3.81 :< 10 -2 3.54:< 10 -2 3 . 6 7 x  10 -2 

R t 1 "65 :< 10 -4 1"56 x 10 -4 1-60 x 10 -4 

= 1 ° / . to l  = 0"001 
Pt 9"28 :< 10 -3 9"08 x 10 -3 9" 17 :< 10 -3 

R t 1 "62 :< 10 -4 1-59 x 10 -4 1 "60 x 10 -4 

X-rays parallel 
6 = 0-25 ° / x o l  = 1 

Pt 2-81 x 10 -2 3.17 × 10 -2 3.53 x 10 -2 

R1 1.31 :< 10 -4 1.43 x 10 -4 1.55 x 10 -4 

6 = 1 ° / x o l  = 1 
P1 8-27 :< 10 -3 8.59 :< 10 -3 8-83 x 10 -3 
R 1 1.47 :< 10 -4 1.52 :< 10 -4 1-55 x 10 -4 

6 = 0 . 2 5  ° p , o / =  0.1 
Pt 9.79 x l0 -3 9.82 x l0  -3 9.93 :< l0  -3 

R l 4 . 3 0 x  10 -5 4.31 :< 10 -5 4-35 :< 10 -5 

6 = 1 ° / z o l =  0"1 
Pt 2.47 :< 10 -3 2.48 :< 10 -3 2.48 :< 10 -3 

R t 4"33 x 10 -5 4"34:< 10 -5 4"35 x 10 -5 

X-rays perpendicular 
6 = 0.25 ° l zo l  = 1 

P, 6.77 x 10 -2 9.01 x 10 -2 1-33 x 10 -1 

R 1 3.65 x 10 -4 4.43 x 10 -4 5.82 × 10 -4 

6 = 1 ° /xol = 1 
Pt 2"77 × 10 -2 3 . 0 0 x  10 -2 3"33 x 10 -2 

R l 5 . 1 2 x  10 -4 5"41 x 10 -4 5 - 8 2 x  10 -4 

8 = 0 . 2 5  ° / ~ o / =  0-1 
Pt 3"67 :< 10 -2 3"59 x 10 -2 3.74 :< 10 -2 

R l 1.62 :< 10 -4 1 "59 :< 10 -4 1 "64 :< 10 -4 

6 = 1 ° / X o / =  0"I 
Pt 9.32:< 10 -3 9"26:< 10 -3 9"36:< 10 -3 

R I 1"63 :< 10 -4 1-63 x 10 -4 1.64 :< 10 -4 

difference between the two-beam and three-beam 
results, one has r2 = r3 almost exactly. The results of 
(23b) are the same as those of (22), with only one 
exception reported in parentheses in Table 2. We can 
summarize the results of the three-beam case by say- 
ing that unless the reflectivity of the primary reflection 
is much weaker than the others, in general the effect 
of the secondary reflection is to weaken the primary 
beam. The magnitude of this effect depends in a 
complicated way upon all experimental parameters, 
but in addition to an increase of this effect with the 
crystal reflectivities there is an increase with/zl.  

An example of symmetry-related multiple reflec- 
tions in the 110 plane of the reciprocal lattice occurs 
when the reflection 002 is in symmetrical transmission 
and the sphere of reflection has a radius of 2.031 
reciprocal-lattice units. In this case, one has simul- 
taneous excitation of the reflections 113 and 111. This 
condition is fulfilled using h = 1.7903 A (Co Ka)  and 
ao = 3-6361 A ( - a o  of copper). Both secondary beams 

are in transmission so that (24) applies. The results 
of this calculation are reported in Table 3. Inspection 
of this table shows that the power of the primary 
beam calculated with (24) can be higher or lower 
than the corresponding two-beam and kinematical 
values, in an apparently unsystematic way. 

A final point which has not previously been recog- 
nized concerns the behaviour of P~ in an to scan. 
While in the symmetrical two-beam case the 
rriaximum value of P~ is always attained at the centre 
of the reflection, that is when the mosaic distribution 
function and consequently the reflectivity is at its 
peak value, in the three-beam case this is not 
necessarily so. If the reflectivity r 0 is written as 
Q0 W(A ), where Qu is the well known crystallographic 
function and W(A) is the mosaic distribution func- 
tion, we can easily evaluate dP~/da as 

dPl (ZQ  dW 
dA "7" 0ri dza - 0ri/"dA (25) 
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and then look for those values of A other than 0 or 
which cause the r ight-hand side of (25) to vanish. 

In practice it has been observed that there is only one 
such value, ,4 0 , which is the root, when it exists, of  
a t ranscendental  equation. As a consequence,  there 
may be a dip at the centre of the reflection and a 
max imum at ,40. Notice that the existence of the dip 
is not confined to the approximate  solution (22) in 
which case it could be a mathemat ica l  artefact. 

In conclusion,  we can say that the present investiga- 
tion has shown that, in the case of mult iple scattering 
of electromagnetic radiation,  in general there is coup- 
ling between the two states of  polarization either 
through the ampli tudes  or through the intensities. 
Only in the coplanar  case do the two X-ray com- 
ponents act independent ly  and can be decoupled.  The 
numerical  examples  which have been reported are 
the first exact or almost exact calculations of the effect 
of  mult iple reflections in a mosaic crystal within the 
limits of  validity of the transfer equations. These 
calculations show that appl icat ion of the kinematical  
approximat ion  to crystals having reflectivities com- 
parable  to those of copper can be grossly in error (up 
to a factor of  two) if  the crystal thickness is of  the 
order of  what is used in practice ( ~ o l -  1 for X-rays 

and /xo l -0 .01  for neutrons).  This discrepancy can 
be significantly reduced using the two-beam formulas;  
however, i f  one is interested in obtaining accurate 
structure factors, mult iple reflections have to be taken 
into account. Equations (22), (23) and (24) can be 
very useful for this purpose, part icularly in the case 
of neutrons. 

We thank V. Contini  for many helpful discussions. 
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Abstract 

An extension of  the maximum-ent ropy  (ME) data- 
restoration method is presented that is sensitive to 
periodic correlations in data. The method takes 
advantage of the higher  signal-to-noise ratio for 
periodic informat ion  in Fourier  space, thus enhancing  
statistically significant frequencies in a manner  which 
avoids the user bias inherent  in conventional  Fourier  
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filtering. This procedure incorporates concepts under- 
lying new approaches  in quantum mechanics  that 
consider entropies in both position and momen tum 
spaces, a l though the emphasis  here is on data restor- 
ation rather than quantum physics. After a fast Four- 
ier transform of the image, the phases are saved and 
the array of  Fourier  modul i  are restored using the 
maximum-ent ropy  criterion. A first-order continu- 
ation method is introduced that speeds convergence 
of the M E computat ion.  The restored modul i  together 
with the original phases are then Fourier inverted to 
yield a new image; tradit ional  real-space ME restor- 
ation is appl ied to this new image complet ing one 
stage in the restoration process. In test cases with 
various types of added noise and in examples  of  
normal and high-resolution electron-microscopy 
images, dramat ic  improvement  can be obtained from 
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